Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Os(1)	0.58045 (2)	0.04319 (6)	0.16885 (4)	0.0628
Os(2)	0.58275 (2)	0.43598 (7)	0.32288 (5)	0.0736
Ge(1)	0.62469 (4)	0.2281(1)	0.27946 (9)	0.0584
O(11)	0.5489 (4)	-0.014(2)	0.3394 (9)	0.1091
O(12)	0.5988 (4)	0.222(1)	0.0145 (7)	0.0947
O(13)	0.6570 (4)	-0.151 (1)	0.2056 (8)	0.0949
O(14)	0.5206 (4)	-0.156(1)	0.0364 (9)	0.1070
O(21)	0.6014 (4)	0.306 (2)	0.5174 (9)	0.1203
O(22)	0.5519 (4)	0.467(1)	0.1110 (9)	0.1121
O(23)	0.6611 (4)	0.625(1)	0.364(1)	0.1136
O(24)	0.5225 (4)	0.654(1)	0.363 (1)	0.1211
C(11)	0.5606 (4)	-0.006(2)	0.276(1)	0.0782
C(12)	0.5933 (5)	0.151 (2)	0.071 (1)	0.0711
C(13)	0.6295 (5)	-0.083 (2)	0.193 (1)	0.0708
C(14)	0.5422 (5)	-0.086 (2)	0.083 (1)	0.0852
C(21)	0.5956(5)	0.353 (2)	0.447 (1)	0.0825
C(22)	0.5642 (5)	0.459 (2)	0.191 (1)	0.0897
C(23)	0.6324 (5)	0.557 (2)	0.348(1)	0.0857
C(24)	0.5453 (6)	0.571 (2)	0.349(1)	0.0944
C(101)	0.6585 (2)	0.1391 (9)	0.3950(5)	0.0584
C(102)	0.6864 (3)	0.2276 (7)	0.4548 (6)	0.0626
C(103)	0.7129 (2)	0.1756 (9)	0.5373 (5)	0.0657
C(104)	0.7115 (3)	0.035(1)	0.5600(5)	0.0773
C(105)	0.6836 (3)	-0.0536(7)	0.5003(6)	0.0657
C(106)	0.6571 (2)	-0.0015 (8)	0.4178 (5)	0.0626
C(201)	0.6684 (2)	0.2987 (8)	0.2250 (6)	0.0600
C(202)	0.6625 (2)	0.4199 (8)	0.1695 (6)	0.0627
C(203)	0.6941 (3)	0.4666 (8)	0.1309 (6)	0.0679
C(204)	0.7317 (2)	0.392(1)	0.1477 (7)	0.0935
C(205)	0.7376 (2)	0.271 (1)	0.2032 (7)	0.0679
C(206)	0.7060 (3)	0.2242 (7)	0.2418(6)	0.0627

Table 2. Selected geometric parameters (Å, °)

Os(1)Ge(1)	2.599 (2)	Ge(1)—C(101)	1.992 (6)
Os(1)—C(11)	1.95 (2)	Ge(1)-C(201)	1.986 (6)
Os(1)—C(12)	1.94 (2)	O(11)—C(11)	1.13 (2)
Os(1)—C(13)	2.00 (2)	O(12)—C(12)	1.13(1)
Os(1)—C(14)	1.98 (2)	O(13)—C(13)	1.11 (2)
Os(2)Ge(1)	2.614 (2)	O(14)—C(14)	1.10(2)
Os(2)—C(21)	1.97 (2)	O(21)—C(21)	1.11 (2)
Os(2)—C(22)	1.93 (2)	O(22)—C(22)	1.16 (2)
Os(2)—C(23)	1.99 (2)	O(23)—C(23)	1.14 (2)
Os(2)—C(24)	1.92 (2)	O(24)—C(24)	1.16(2)
Os(1)— $Ge(1)$ — $Os(2)$	114.41 (6)	Os(2) - C(21) - O(21)	177.5 (16)
Os(1)—C(11)—O(11)	170.2 (17)	Os(2)-C(22)-O(22)	176.1 (18)
Os(1)—C(12)—O(12)	174.9 (14)	Os(2)—C(23)—O(23)	178.2 (17)
Os(1)—C(13)—O(13)	178.7 (15)	Os(2)-C(24)-O(24)	178.5 (19)
Os(1)-C(14)-O(14)	178.8 (16)		

The phenyl C atoms were regularized, with C—C bond lengths of 1.39 Å, and the phenyl H atoms were placed in calculated positions, with C—H bond lengths of 1.0 Å. The phenyl rings were refined as rigid groups pivoted about dummy atoms placed at the centroids. Equivalent phenyl C atoms were given the same displacement parameters and their shifts made equivalent, giving four sets of U_{ij} per phenyl ring. The metal hydrides were also placed in calculated positions, at 1.66 Å from their attached Os atoms and *trans* to a CO group.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRCVAX DATRD2 (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: CRYSTALS (Watkin, Carruthers & Betteridge, 1985). Molecular graphics: NRCVAX. Software used to prepare material for publication: NRCVAX TABLES.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1150). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bush, M. A. & Woodward, P. (1967). J. Chem. Soc. Chem. Commun. pp. 166–167.
- Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- George, R. D., Knox, S. A. R. & Stone, F. G. A. (1973). J. Chem. Soc. Dalton Trans. pp. 972–975.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Leong, W. K., Pomeroy, R. K. & Einstein, F. W. B. (1995). Organometallics, 15, 1589–1589.
- Watanabe, M. & Sano, H. (1990). Bull. Chem. Soc. Jpn, 63, 1455-1461.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.
- Zubieta, J. A. & Zuckerman, J. J. (1978). Prog. Inorg. Chem. 24, 251-475.

Acta Cryst. (1997). C53, 24-27

Two Chloro-Bridged Osmium Clusters

WENG KEE LEONG,^a FREDERICK W. B. EINSTEIN^b AND ROLAND K. POMEROY^b

^aDepartment of Chemistry, National University of Singapore, Kent Ridge, Singapore 119260, and ^bDepartment of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6. E-mail: chmlwk@scil.nusstf. nus.sg

(Received 11 December 1995; accepted 30 September 1996)

Abstract

The molecular structure of the chloro-bridged tetraosmium cluster, dodecacarbonyl- $1\kappa^3 C, 2\kappa^3 C, 3\kappa^3 C, 4\kappa^3 C$. μ -chloro- $3:4\kappa^2 Cl$ -tris- μ -hydrido- $1:2\kappa^2 H; 1:3\kappa^2 H; 2:4\kappa^2 H$ tetraosmium(5 *Os*—*Os*), [Os₄(μ -Cl)(μ -H)₃(CO)₁₂], consists of a 'butterfly' arrangement of Os atoms, just as in the iodo analogue. The chloro bridge in the tetraosmium cluster is symmetric, whereas in the pentaosmium cluster, tetradecacarbonyl- $1\kappa^3 C, 2\kappa^2 C, 3\kappa^3 C, 4\kappa^3 C, 5\kappa^3 - \mu$ chloro- $2:5\kappa^2 Cl$ -tris- μ -hydrido- $1:2\kappa^2 H; 2:3\kappa^2 H; 2:4\kappa^2 H$ - pentaosmium(8 Os—Os), $[Os_5(\mu$ -Cl)(μ -H)₃(CO)₁₄], it is distinctly asymmetric. This asymmetry is attributed to the *trans* influence of a carbonyl ligand, which lengthens the *trans*-Os—Cl bond.

Comment

The two title chloro-bridged clusters $[Os_4(\mu-Cl)(\mu-H)_3-(CO)_{12}]$, (I), and $[Os_5(\mu-Cl)(\mu-H)_3(CO)_{14}]$, (II), were obtained in low yield from the reaction of impure MeSnH₃ with $[Os_3(\mu-H)_2(CO)_{10}]$ at 353 K. The impurities are believed to be MeSnH_{3-x}Cl_x (x = 0-2) arising from incomplete reduction of MeSnCl₃ by LiAlH₄ used in the preparation of MeSnH₃.

In both clusters, the metal hydrides were placed in calculated positions (Orpen, 1980). Although not isomorphous, the tetraosmium cluster [(I); Fig. 1] has the same 'butterfly' structure as the known iodo analogue $[Os_4(\mu-I)(\mu-H)_3(CO)_{12}]$; the structure of the iodo compound was determined by both X-ray and neutrondiffraction, methods (Johnson, Lewis, Raithby, Wong & Rouse, 1980). As expected, the smaller size of the Cl atom leads to a larger Os—X—Os (X = halogen) angle and shorter Os - X bond lengths. Both tetraosmium clusters show the same lengthening of the hydridebridged Os-Os bonds compared with the unbridged Os-Os bonds; in the chloro compound, these range from 2.935(1) to 3.0114(9) Å and from 2.848(1) to 2.849(1)Å, respectively, while in the iodo analogue. they are 2.927 (2) and 3.055 (1) Å, and 2.877 Å, respectively. Furthermore, the shortest hydride-bridged Os-Os bond in each cluster is the 'hinge' bond, viz. the Os2-Os4 bond in the cluster reported here. It is also noteworthy that the assumed positions of the hydride ligands imply a chirality of both the chloro and iodo tetraosmium clusters, *i.e.* each crystal may be regarded as comprising a racemic mixture, although it seems likely that the hydride ligands are fluxional in solution. The tetraosmium cluster also possesses an approximate molecular non-crystallographic twofold axis through the Cl atom and the midpoint of the 'hinge' bond [detected by the *BUNYIP* program (Hester & Hall, 1996)].

Fig. 1. ORTEPII (Johnson, 1976) diagram (30% probability displacement ellipsoids) showing the atomic numbering scheme for [Os₄(μ-Cl)(μ-H)₃(CO)₁₂].

The osmium skeleton of the pentaosmium cluster [(II); Fig. 2] is the same as that of the pentaosmium hydridocarbonyl cluster $[Os_5(\mu-H)_2(CO)_{16}]$ (Guy & Sheldrick, 1978). There is also structural similarity between $[Os_4(\mu-Cl)(\mu-H)_3(CO)_{12}]$ (described above) and $[Os_5(\mu-Cl)(\mu-H)_3(CO)_{14}]$ in that the latter can be regarded as derived from the former by capping one 'wing' of the 'butterfly'; the location of the hydrides

Fig. 2. ORTEPII (Johnson, 1976) diagram (30% probability displacement ellipsoids) showing the atomic numbering scheme for [Os₅(μ-Cl)(μ-H)₃(CO)₁₄].

Refinement

in the two clusters are, however, quite different. Although the hydride-bridged Os—Os bonds [2.895(1)– 2.945(1)Å] are again lengthened compared with the unbridged Os—Os bonds [2.828(1)–2.875(1)Å], this effect appears to be less than in the more open tetraosmium cluster. One of the most significant structural differences between the tetraosmium and pentaosmium clusters is that the chloro bridge in the latter is distinctly asymmetric; the Os—Cl bonds are 2.407(6) and 2.478(6)Å, respectively. This may be attributed to the absence of a carbonyl *trans* to the chloro bridge on the Os3 atom; presumably, the presence of a *trans* carbonyl on Os1 decreases the Os to Cl $d\pi$ – $p\pi$ bonding, hence lengthening the Os1—Cl1 bond compared with the Os3—Cl1 bond.

Experimental

MeSnCl₃ and excess LiAlH₄ were placed in a Carius tube, which was then evacuated and diethyl ether vacuum transferred in. The reaction mixture was stirred at 263 K for 45 min and then the volatiles were vacuum transferred into a previously evacuated Carius tube containing $[Os_3(\mu-H)_2(CO)_{10}]$ (0.33 equivalents). The resulting mixture was stirred at room temperature overnight, then heated at 353 K for 3 d. The solvent and volatiles were then removed *in vacuo* and the residue extracted with warm hexane followed by column chromatography on silica. Elution with hexane gave a purple band of the starting cluster, followed by a lemon yellow band, which upon concentration and cooling gave yellow crystals of $[Os_4(\mu-Cl)(\mu-H)_3(CO)_{12}]$ and $[Os_5(\mu-Cl)(\mu-H)_3(CO)_{14}]$.

		O43	0.7610 (19)	0.7913	(10) 0.4120 (11)	0.0757
		C11	0.516 (2)	0.8703	(10) 0.0495 (13)	0.038 (4)
Compound (1)		C12	0.747 (2)	0.9189	(12) 0.1841 (16)	0.055 (5)
Crystal data		C13	0.765 (2)	0.9277	(12) -0.0371(16)	0.059 (5)
	Ma Kanadiatian	C21	1.058 (2)	0.8848	(12) $0.2057(16)$	0.054 (5)
$[Os_4 Cl(H)_3 (CO)_{12}]$	Mo $\mathbf{A}\alpha$ radiation	C22	1.037(2)	0.8044	(11) -0.0028 (13) (11) 0.1436 (15)	0.050(5)
$M_r = 1135.40$	$\lambda = 0.71069 \text{ A}$	C31	0.731 (2)	0.5700	(12) 0.0098 (16)	0.059 (5)
Monoclinic	Cell parameters from 25	C32	1.012(2)	0.5946	(13) 0.0762 (16)	0.061 (5)
$P2_1/n$	reflections	C33	0.914 (2)	0.6337	(11) -0.1235 (16)	0.055 (5)
a = 9.5247 (8) Å	$\theta = 15.5 - 20.0^{\circ}$	C41	0.907 (2)	0.6210	(12) 0.2749 (15)	0.054 (5)
b = 16.7749(18) Å	$\mu = 24.88 \text{ mm}^{-1}$	C42	0.631 (2)	0.6454	(10) 0.1919 (13)	0.041 (4)
c = 12.9718(19) Å	T = 294 K	C43	0.777(2)	0.7591	(11) 0.3358 (15)	0.047(5)
$\beta = 97574(9)^{\circ}$	Hexagonal prism					
$V = 2054.5(4) \text{ Å}^3$	$0.42 \times 0.33 \times 0.24 \text{ mm}$					
7 = 2004.0 (4) R	Yellow				0	
L = 4 D = 2.671 Ma m ⁻³	Tenow	Table	e 2. <i>Selecte</i>	d geometr	ric parameters (A,	°) for (I)
$D_x = 3.071$ Mg III		Os1—Os2	2	2.849 (1)	Os3—Os4	2.848(1)
D_m not measured		Os1—Os4	4	3.0114 (9)	Os1—C11	2.471 (4)
Deterry		Os2—Os3	3	3.007 (1)	Os3—Cl1	2.474 (5)
Data collection		Os2—Os4	1	2.935 (1)		
Nonius CAD-4 diffractom-	2453 observed reflections	Os2—Os	I—Os4	60.04 (2)	Os1—Os4—Os2	57.23 (2)
eter	$[I_{\rm net} > 2.5\sigma(I_{\rm net})]$	Os1—Os2	2—Os3	76.89 (3)	Os1—Os4—Os3	76.83 (3)
$\omega/2\theta$ scans	$R_{\rm int} = 0.026$	$Os1 - Os_4$	2—Os4	62.73 (2) 57.25 (2)	Os2 - Os4 - Os3	62.64 (2)
Absorption correction:	$\theta_{\rm max} = 23.05^{\circ}$	0\$20\$2	3-054	57.25(2) 60.10(2)	081-01-085	94.9(2)
ψ scan and spherical	$h = -10 \rightarrow 10$	0.2 0.1		00.10(2)		
(North, Phillips &	$k = 0 \rightarrow 18$					
Matthews 1968)	$l = 0 \rightarrow 14$	_				
$T_{\rm min} = 0.0139$ $T_{\rm max} =$	2 standard reflections	Compo	und (II)			
0.0487	frequency: 60 min	Crystal	data			
2010 massured reflections	intensity decay: 20%	[Oc-Cl/]			Mo Ko rediction	
2940 incasuleu reflections	intensity uccay. 270				$\lambda = 0.71000$	
2042 independent renections		$M_r = 13$	001.02		$\lambda = 0.71009 \text{ A}$	

Refinement on FExtinction correction: R = 0.038Larson (1970) wR = 0.041Extinction coefficient: S = 3.20.058(10)2453 reflections Atomic scattering factors 203 parameters from International Tables $w = 1/[\sigma^2(F_o)]$ for X-ray Crystallography $+ 0.00005 |F_o|^2$ (1974, Vol. IV, Table $(\Delta/\sigma)_{\rm max} < 0.001$ 2.2B) $\Delta \rho_{\rm max} = 2.4 (3) \ e \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.6$ (3) e Å⁻³

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (I)

$U_{eq} =$	$(1/3)\Sigma_i\Sigma_i$	$U_{ii}a_i^*a_i^*\mathbf{a}_i$	aj.
------------	-------------------------	--------------------------------	-----

 U_{eq}

0.036

0.035

0.040

0.036

0.0496

0.0655

0.0670

0.0736

0.0663

0.0778

0.0844

0.0767

0.0732

0.0786

0.0584

0.0627

0.06846 (5)

0.10918 (5)

0.00956 (5)

0.20724 (5)

0.0393 (11)

0.2534 (12)

0.2621 (11)

0.1670(14)

0.0091 (13)

0.1096(13)

0.3151 (12)

0.1856 (12)

-0.2042(11)

-0.0961(12)

-0.0689(12)

-0.0706 (4)

y 0.84954 (4)

0.80307 (4)

0.65701 (4)

0.70887(4)

0.7483(3)

0.8842 (9)

0.9621 (9)

0.9702 (9)

0.9357 (8)

0.9001 (10)

0.7291 (10)

0.5150 (9)

0.5587 (8)

0.6213 (10)

0.5741 (8)

0.6077 (8)

7012

0.71691 (7)

1.00660(7)

0.86445 (8)

0.80075 (7)

0.4040 (15)

0.7685 (16)

0.7892 (17)

1.0900 (16)

1.0867 (18)

1.2985 (17)

0.6574 (18)

1.1061 (17)

0.9456 (18)

0.9749 (16)

0.5360 (14)

0 7(10/10

0.6771 (5)

Os1 Os2

Os3

Os4

CH

011

012

013

O21

O22

O23

031

032

033

041

O42

Triclinic $P\overline{1}$ a = 8.8621 (15) Å b = 9.3825 (15) Å c = 15.9148 (23) Å $\alpha = 80.815 (13)^{\circ}$ $\beta = 85.332 (13)^{\circ}$ $\gamma = 62.828 (13)^{\circ}$ $V = 1162.1 (3) \text{ Å}^{3}$ Z = 2 $D_x = 3.948 \text{ Mg m}^{-3}$ D_m not measured	Cell parameters from 25 reflections $\theta = 15.00-18.15^{\circ}$ $\mu = 27.45 \text{ mm}^{-1}$ T = 294 K Irregular plate $0.19 \times 0.16 \times 0.08 \text{ mm}$ Red
Data collection Nonius CAD-4 diffractom- eter $\omega/2\theta$ scans Absorption correction: Gaussian by integration from crystal shape (Busing & Levy, 1957) $T_{min} = 0.0273, T_{max} =$ 0.1687 3274 measured reflections 3012 independent reflections	2536 observed reflections $[I_{net} > 2.5\sigma(I_{net})]$ $R_{int} = 0.050$ $\theta_{max} = 22.5^{\circ}$ $h = -8 \rightarrow 9$ $k = 0 \rightarrow 10$ $l = -16 \rightarrow 17$ 2 standard reflections frequency: 60 min intensity decay: 2.0%
Refinement Refinement on F R = 0.054 wR = 0.063 S = 3.2 2536 reflections 237 parameters $w = 1/[\sigma^2(F_{\theta}) + 0.0002 F_{\theta} ^2]$	$\Delta \rho_{\text{max}} = 2.7 \ (5) \ e^{-3} \ \Delta \rho_{\text{min}} = -3.7 \ (5) \ e^{-3} \ A^{-3}$ Extinction correction: none Atomic scattering factors from <i>International Tables</i> for X-ray Crystallography (1974, Vol. IV, Table

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\check{A}^2) for (II)

 $(\Delta/\sigma)_{\rm max} = 0.04$

2.2B)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Os1	0.80842 (13)	0.27859 (12)	0.14057 (7)	0.03932
Os2	0.92928 (12)	0.34997 (11)	0.28145 (6)	0.03527
Os3	0.76671 (12)	0.66189 (11)	0.17241 (6)	0.03418
Os4	0.57629 (12)	0.48878 (11)	0.25493 (6)	0.03231
Os5	0.70828 (12)	0.62988 (12)	0.35458 (6)	0.03578
Cil	0.8173 (8)	0.5178 (8)	0.0526 (4)	0.0395
011	0.602 (3)	0.274 (3)	-0.0009 (14)	0.0706
012	0.785 (4)	0.009 (3)	0.2590(15)	0.0752
013	1.131 (3)	0.059 (3)	0.0511 (15)	0.0632
021	1.166 (3)	0.414 (3)	0.385 (2)	0.0722
022	0.933 (3)	0.083 (3)	0.4180(17)	0.0729
023	1.257 (3)	0.107 (3)	0.2108 (16)	0.0704
031	0.520(3)	0.992 (2)	0.0853 (15)	0.0723
032	1.044 (2)	0.765 (2)	0.1318(14)	0.0581
041	0.349 (3)	0.432 (3)	0.1435(15)	0.0701
042	0.539(3)	0.251 (2)	0.3971 (15)	0.0583
043	0.247 (2)	0.769 (2)	0.3010(15)	0.0629
051	0.933 (3)	0.738 (3)	0.4393 (16)	0.0692
O52	0.690(3)	0.416(2)	0.5156(12)	0.0584
O53	0.391 (3)	0.930(2)	0.3985 (14)	0.0627
CH	0.675 (3)	0.279 (3)	0.0478 (19)	0.047 (7)
C12	0.792 (4)	0.108 (4)	0.218 (2)	0.064 (9)
C13	1.019 (4)	0.139 (4)	0.085 (2)	0.064 (8)
C21	1.072 (4)	0.394 (4)	0.350 (2)	0.068 (9)
C22	0.923 (4)	0.185 (4)	0.369 (2)	0.064 (8)
C23	1.131 (4)	0.197 (4)	0.232 (2)	0.060 (8)

C31	0.615 (4)	0.862 (4)	0.1195 (19)	0.055(7)		
C32	0.942 (4)	0.725 (3)	0.1485 (19)	0.054 (7)		
C41	0.441 (4)	0.448 (3)	0.180(2)	0.054(7)		
C42	0.558 (3)	0.334 (3)	0.3453 (18)	0.042 (6)		
C43	0.373 (4)	0.665 (3)	0.2885 (19)	0.054 (7)		
C51	0.850 (4)	0.701 (3)	0.405 (2)	0.059 (8)		
C52	0.696 (3)	0.495 (3)	0.457 (2)	0.046(7)		
C53	0.508 (4)	0.824 (4)	0.378 (2)	0.067 (9)		
Table 4. Selected geometric parameters (Å, °) for (11)						
Os1-Os2		2.855 (2)	Os3—Os4	2.945(1)		
Os1-Os4		2.875 (1)	Os3—Os5	2.895(1)		
Os2—Os3		2.930(1)	Os4—Os5	2.832(1)		
Os2—Os4		2.825(1)	Os1Cl1	2.478 (6)		
Os2—Os5		2.828(1)	Os3CH	2.407 (6)		
Os2—Os1–	-Os4	59.08 (4)	Os1—Os4—Os2	60.10 (4)		
Os1-Os2-	0.3	75 02 (4)	0\$1-0\$4-0\$3	75.38(4)		
	-0.55	13.92 (4)	0.1 0.1 0.0			
Os1-Os2-	-0s5 -0s4	60.82 (4)	Os2—Os4—Os3	61.00 (4)		

Os2-Os3-Os5	58.07 (3)	Os3—Os5—Os4	61.87 (4)
Os4-Os3-Os5	58.02 (3)	Os1-Cl1-Os3	93.5 (2)
The hydride ligands the HYDEX program	were plac 1 (Orpen,	ed in positions 1980), but were	calculated with not refined.

Os1-Os4-Os5

Os2-Os4-Os5

Os3-Os4-Os5

Os2-Os5-Os3

Os2-Os5-Os4

61.52 (4)

117.80(5)

60.35 (4)

60.15 (4)

57.47 (3)

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX DATRD2 (Gabe, Le Page, Charland, Lee & White, 1989); program(s) used to solve structures: NRCVAX SOLVER; program(s) used to refine structures: CRYSTALS (Watkin, Carruthers & Betteridge, 1984); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: NRCVAX TABLES.

The authors would like to thank the editor for pointing out the approximate molecular non-crystallographic twofold axis.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1152). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Os3-Os2-Os4

Os1-Os2-Os5

Os3-Os2-Os5 Os4-Os2-Os5

Os2-Os3-Os4

- Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Guy, J. J. & Sheldrick, G. M. (1978). Acta Cryst. B34, 1725-1727.
- Hester, J. & Hall, S. R. (1996). J. Appl. Chem. 29, 474-478.
- Johnson, B. F. G., Lewis, J., Raithby, P. R., Wong, K. & Rouse, K. D. (1980). J. Chem. Soc. Dalton Trans. pp. 1248-1250.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Orpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509-2516.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1984). CRYSTALS. Chemical Crystallography Laboratory, University of Oxford, England.

116.97 (5) 59.98 (4)

60.12 (4)

61.58(4)

59.88 (4)